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Abstract

Two-view homography estimation is a classic and fun-
damental problem in computer vision. While conceptually
simple, the problem quickly becomes challenging when mul-
tiple planes are visible in the image pair. Even with correct
matches, each individual plane (homography) might have
a very low number of inliers when comparing to the set
of all correspondences. In practice, this requires a large
number of RANSAC iterations to generate a good model
hypothesis. The current state-of-the-art methods therefore
seek to reduce the sample size, from four point correspon-
dences originally, by including additional information such
as keypoint orientation/angles or local affine information.
In this work, we continue in this direction and propose a
novel one-point solver that leverages different approximate
constraints derived from the same auxiliary information. In
experiments we obtain state-of-the-art results, with execu-
tion time speed-ups, on large benchmark datasets and show
that it is more beneficial for the solver to be sample efficient
compared to generating more accurate homographies.

1. Introduction
Scenes with dominant planes are common in man-made en-
vironments, and also provide strong cues on the 3D scene
geometry. In these scenarios, finding the two-view camera
geometry can be formulated as an image homography es-
timation task. Assuming the cameras’ intrinsic calibrations
are known, each homography can be directly factorized into
the 3D plane parameters and the relative camera pose. This
allows for a very compact representation of the entire geo-
metric setup, using only a single 3 × 3 matrix without any
additional internal constraints.

The standard approach for finding homographies relies
on first detecting a sparse set of tentative matching key-
points, followed by robust estimation in some variant of
RANdom SAmple Consensus (RANSAC) [25]. At the core
of these frameworks is the process of repeatedly generat-
ing homography proposals from small subsets of the data,

Figure 1. One-point Homography Estimation. A plane from
the source image (green patch to the left) is transformed using
homographies. Ground truth patch is shown in green in the tar-
get image to the right. Blue shows (noisy) transformed patches
for the top five inlier samples using the proposed 1-SIFT solver.
Red corresponds to the estimated homography resulting from GC-
RANSAC [9] with the proposed 1-SIFT solver.

followed by verification and scoring using the full set of
correspondences. To minimize the risk of including an
outlier correspondence, it is preferred to estimate the ho-
mographies from as few correspondences as possible, so
called minimal samples. For homography estimation, this
is particularly important as “outliers” might come from cor-
rect matches that simply belong to a different plane (and
thus do not support the sought homography), i.e. solving
the model selection problem. So, even in favorable match-
ing conditions, this can result in extremely low inlier ratios
when considering all available correspondences between
two images. In the recent large-scale Homography Esti-
mation Benchmark (HEB) [14], this trend is clear where
the top performing methods leverage additional information
(e.g. orientation/angle or affine correspondences) to reduce
the number of points necessary to generate the homography
proposals inside RANSAC.

In this paper, we further delve into the trade-off between
model accuracy and model complexity. We combine seem-
ingly redundant (and dependent) additional constraints from
auxiliary information to derive a homography solver that
only requires a single point. In our experiments we show
that this solver, while yielding very noisy homography esti-
mates, improves over the current state-of-the-art due to be-
ing extremely sample efficient.



1.1. Related Work

Robust Estimators. The standard paradigm for robust
model estimation is to use a hypothesize-and-verify frame-
work such as RANSAC [25]. These methods generate
model proposals by randomly sampling small subsets of
the data and fitting models to these. Samples which
only contain inliers are likely to yield good models which
have a large consensus set (measurements that agree with
the particular model). Since Fischler and Bolles’ origi-
nal paper [25], there have been many proposed improve-
ments to the original algorithm, for example better sam-
pling [19, 43, 45], improved scoring [10–12], early stopping
criteria [39], and early sample rejection [17]. The overall
research area is still active and new variants are published
yearly [18, 43, 47].

In [20] Chum et al. highlighted the fact that even all-
inlier samples might lead to poor models due to measure-
ment noise or unstable configurations. To address this they
proposed LO-RANSAC, which performs a local optimiza-
tion, iteratively refitting the model estimates on the tenta-
tive inlier sets whenever promising candidates are found.
Since then, there have been multiple proposed approaches
on how to do this refitting best, e.g. LO+-RANSAC [32],
MAGSAC++ [10] and GC-RANSAC [9]. Since these meth-
ods are designed to be robust against low-quality model pro-
posals, they are also well suited to handle modeling errors.
In this paper, we leverage this robustness and propose new
minimal estimators that yield very noisy homographies, due
to relying on approximate geometric constraints.

Homography Estimators. At the core of RANSAC are
the model estimators (minimal solvers) that, given a sam-
ple, generate one or more model proposals. For a general
homography, four point correspondences is minimal and
the homography can be estimated linearly [30]. In many
image pairs, multiple planes are visible, which means that
the effective inlier-ratio for each individual plane (homog-
raphy) can be extremely low when considering the full set
of matches. Note that these “outliers” occur even with
perfect point-wise matching. To tackle this issue, there
have been several methods proposed that leverage addi-
tional information or assumptions to reduce the number of
points (matches) necessary to generate proposals. In [4],
Barath and Hajder propose a homography solver that uses
two affine correspondences (point coordinates together with
a 2 × 2 local affine transformation). The affine corre-
spondences can be estimated directly from image data [15,
40] or approximated using scale/orientation estimates from
e.g. SIFT [37]. In [3, 7] Barath et al. proposed minimal
estimators that instead directly use the SIFT scale and ori-
entation to estimate the homography. There have also been
papers that introduce other constraints, e.g. [5] propose us-

ing known epipolar geometry together with one affine corre-
spondence, while [26] use a single affine aware correspon-
dence to estimate the affine homography. In [13, 22, 24],
the authors show that the relative orientation can be par-
tially replaced with information about the gravity direc-
tion in both images. In [23] the authors combine SIFT
and gravity for homography estimation. Auxiliary point-
wise information has also been used to reduce the sample
complexity in other geometric estimation tasks, e.g. essen-
tial matrix [1, 6, 8, 35], fundamental matrix [3], absolute
pose [46], and generalized relative pose [27–29]. Another
approach is to use approximate or simplified model assump-
tions. For example [44] leverages affine fundamental matri-
ces and [42] consider orthographic approximations for es-
sential matrix estimation.

2. Background
Assume that we have a set of 3D points {Xi}; i =
1; 2; 3; :::; k that lie on a plane in 3D space. These are ob-
served by two cameras K1[I | 0] and K2[R | t] with 2D-
image point correspondences {mi1;mi2}; i = 1; 2; 3; :::; k
in the first and second images, respectively. We focus on
the calibrated setting where K1 and K2 are known. In the
supplementary material, we discuss the uncalibrated case.
With known calibration we have xi2 = K�1

2 mi2, and
xi1 = K�1

1 mi1. This gives

�i1xi1 = Xi; (1)
�i2xi2 = RXi + t; (2)

where �i1 and �i2 are the depths of the points xi1 and xi2,
respectively. Let n be the unit normal vector of the plane
with respect to the first camera frame, and let d denote the
distance from the plane to the optical center of the first cam-
era. Then we have

n>Xi = d: (3)

Substituting (1) into (3) we get

1

�i1
=

1

d
n>xi1: (4)

On the other hand, from (1) and (2) we have

�i2
�i1

xi2 = Rxi1 +
1

�i1
t: (5)

Substituting (4) into the factor of t in (5), we get

�i2
�i1

xi2 = (R +
t

d
n>| {z }

H

)xi1; (6)

where
H = R +

t

d
n> (7)

is the Euclidean homography matrix.



Methods Reference
Number of
solutions

Requires
known intrinsics

Estimates
focal length

Constraints

Point Af�ne Line Depth

G
en

er
al

4-point [30] 1 - - 4 - - -
3-SIFT [3] 1 - - 4 - 4 -
2-AC [4] 1 - - 4 4 - -
2-SIFT [7] 4 - - 4 4 4 -
2-SIFT Proposed 2 4 - 4 - 4 4
1-SIFT Proposed 2 4 - 4 4 4 4

R
ot

at
io

n 2-point(rot) [31] 1 4 - 4 - - -
2-point(f ) [16] 3 - 4 4 - - -
1-SIFT(rot) Proposed 1 4 - 4 - 4 -
1-SIFT(f ) Proposed 1 - 4 4 - 4 4

Table 1.Overview of homography solvers.The properties and constraints for the proposed (gray) and state-of-the-art solvers. Note that
while we call some solvers 1/2/3-SIFT, the solvers can be used with any keypoint detector as long as scale and orientation information is
available.

2.1. Orientation and Scale Constraints

Many widely-used feature detectors, e.g. SIFT and SURF,
do not only provide point correspondences but also addi-
tional information about each feature's scale and rotation.
We will now describe how such information directly can
provide constraints on the homography.
Orientation Constraint. If we assume that the feature ori-
entation can be considered as the direction of a line passing
through this point, then a point correspondence with ori-
entation can provide both point and line homography con-
straints. Such a correspondence will provide three linearly
independent constraints for homography estimation.

Consider a linel i 1 passing through the pointx i 1 in the
�rst image, that maps to the linel i 2 passing through the
point x i 2 in the second image, i.e.

l>
i 1x i 1 = 0 ; (8)

l>
i 2x i 2 = 0 : (9)

Compared to points, lines map with the inverse of the trans-
posed homography [30], i.e.

� i l i 2 = H �> l i 1 =) � � 1
i l i 1 = H > l i 2: (10)

From this we can eliminate the scale factor� i to get

[l i 1]� H > l i 2 = 0; (11)

where[l i 1]� is the skew-symmetric matrix ofl i 1. In gen-
eral, a pair of lines provides two constraints for homogra-
phy estimation. However, as the lines are passing through
the point correspondence (8)-(9), they only yield one addi-
tional linearly independent constraint.
Scale Constraint.In this paper, we assume that the relative
depth can be approximated from relative SIFT [36] scale.

� i 1

f 1 x i 1

X i

si 1

� i

(a)

X 1 X 2

L 1 L 2

[R t ]

(b)

Figure 2.Orientation and scale constraints.(a) The SIFT scale
in the image can be considered as an object with radius� and depth
� in the 3D space projected into the image with focal lengthf and
radiuss. (b) Corresponding lines are mapped by the inverse of the
transposed homography.

This assumption was also used in previous works [1, 27,
35]. Based on Fig. 2, we have

si 1

� i
=

f 1

� i 1
and

si 2

� i
=

f 2

� i 2
: (12)

Hence

� i =
� i 2

� i 1
=

f 2si 1

f 1si 2
: (13)

In this case, the relative depth� i can be formulated using
the focal lengths(f 1; f 2) and the SIFT scales(si 1; si 2).

Let H = [ h1; h2; h3; h4; h5; h6; h7; h8; h9], x11 =
[u11 v11 1]> andx12 = [ u12 v12 1]> . One point corre-
spondence with known relative depth� 1x12 = Hx 11 then
provides three constraints for homography estimation:

u11h1 + v11h2 + h3 � � 1u12 = 0 ;

u11h4 + v11h5 + h6 � � 1v12 = 0 ;

u11h7 + v11h8 + h9 � � 1 = 0 :

(14)

Combining (11) and (14) we may obtain �ve constraints
from one SIFT correspondence. However, since the line
is passing through the point, only four of the constraints are
linearly independent.



2.2. Af�ne Constraints

For an af�ne correspondence we have a triplet
([u11; v11]; [u12; v12]; A 1), where A 1 is a 2 � 2 ma-
trix coding the local af�ne transformation. We denote
the elements ofA 1 with (in row-major order)a1, a2, a3,
and a4. To de�ne A 1, we use the formulation provided
in [41], given as the �rst-order Taylor-approximation of
the projection functions. For perspective cameras, the
formula for A 1 is the �rst-order approximation of the
related homography matrixH given by

a1 = @u12
@u11

= h1 � u 12 h7
� 1

; a2 = @u12
@v11

= h2 � u 12 h8
� 1

;

a3 = @v12
@u11

= h4 � v12 h7
� 1

; a4 = @v12
@v11

= h5 � v12 h8
� 1

;
(15)

where� 1 = u11h7 + v11h8 + h9 is the projective depth
or relative depth. After re-arranging (15), four linear con-
straints are obtained fromA 1, namely

h1 � u12h7 � a1� 1 = 0 ;

h2 � u12h8 � a2� 1 = 0 ;

h4 � v12h7 � a3� 1 = 0 ;

h5 � v12h8 � a4� 1 = 0 :

(16)

In general, the local af�ne transformation hence provides
four linear constraints for homography estimation.
Local Af�ne Transformation from Scale and Orienta-
tion. Given keypoint orientation (oij ) and scale (sij ) infor-
mation, the local af�ne shape can be (poorly) approximated
as

A ij = sij

�
cos(oij ) � sin(oij )
sin(oij ) cos(oij )

�
: (17)

The af�ne correspondence can then be approximated as

A i = A i 2A � 1
i 1 : (18)

In this paper, we will discuss using different combina-
tions of point, af�ne, line and depth constraints for homog-
raphy estimation. Our focus is on general Euclidean homo-
graphies (i.e. calibrated and planar scene) and in the supple-
mentary material we discuss the special case of pure rota-
tion where a shared focal length can be estimated as well. A
brief summary of all discussed solvers is shown in Table 1.

3. Euclidean Homography Estimation

We now present two minimal solvers for Euclidean ho-
mography estimation that leverage keypoint orientation and
scale. First in Section 3.1, a two-point solver which uses the
orientation and scale constraints, and next in Section 3.2, a
one-point solver which also leverages the af�ne constraints.

3.1. The 2­SIFT Solver

Given two SIFT correspondences, we have

� 1x12 = Hx 11; (19)

� 2x22 = Hx 21; (20)

l11 � H > l12; (21)

l21 � H > l22; (22)

l22 � l12 � H (l21 � l11); (23)

where � denotes equality up to scale. Here (21)-(22) is
linearly dependent on (19),(20),(23). In fact, (23) is simply
the point-match coming from intersecting the two lines. We
can write these equations in matrix form

Z = HY ; (24)

whereY andZ are3� 3 matrices that only depend on image
data, except for an unknown scale factor�

Y = [ x11; x21; l21 � l11];

Z = [ � 1x12; � 2x22; � (l22 � l12)]:
(25)

This directly gives an expression for the homography matrix

H = ZY � 1: (26)

As shown in [38, 48], a Euclidean homography matrix
should satisfy the singular value constraint

median(svd(H )) = 1 ; (27)

where the second largest singular value ofH should be 1.
HenceH > H should have a unit eigenvalue, and we have

det(H > H � I 3) = 0 : (28)

Naively this seems to yield a degree six equation in� asH
is linear in� . However, due to the structure ofH it turns
out that (28) is in fact only quadratic in� . There are up to
two solutions that ensureH has one unit singular value.

To see this, considerdet(H > H ) = (det( H ))2. Based
on (26), we havedet(H ) = det( Z) det(Y � 1). Note that,
det(Y � 1) is a constant, anddet(Z) is linear in� . In this
case,det(H > H ) is a quadratic equation in� . The degree
of � in the remaining parts of (28) would not be larger than
two. Hence, (28) is a quadratic equation in� .

3.2. The 1­SIFT Solver

We now present a minimal solver that estimates a ho-
mography from a single correspondence with associated
scale and orientation. The idea is to leverage the rela-
tive depth (14) and line (11) constraints (as in the previ-
ous section), together with the af�ne correspondence con-
straints (15), where the AC is approximated using (17).



Given one SIFT correspondence, we have eight inhomo-
geneous linear constraints on the elements of the unknown
calibrated homographyH , if we combine the af�ne con-
straints with the orientation and scale information. How-
ever, only seven of the eight constraints are linearly inde-
pendent. To make a full-rank system, we use one of the
constraints from mapping the line normals as if they were
points with the homography. In the supplementary material,
we show that surprisingly thisincorrect line constraint has
only a very minor impact on the results. Note that using
this formulation we can not �x the scale of the homography
arbitrarily. However, we can write these equations as

B ĥ = 0; (29)

whereĥ = [ h1; h2; :::; h9; 1]> are the nine entries ofH , ex-
tended with a one, andB is a matrix of size8 � 10 with
known entries. The vector̂h can be written as a linear com-
bination of the two basis vectors from the two-dimensional
null space of the matrixB as

ĥ = � 1ĥ1 + � 2ĥ2; (30)

with
� 1ĥ1(10) + � 2ĥ2(10) = 1 ; (31)

whereĥ1(10); ĥ2(10) are the tenth elements. In this case,
the Euclidean homography matrixH can be formulated
with a single unknown� 1 (or � 2). Substituting this for-
mulation into the singular value constraints (27), we obtain
a quadratic equation in� 1, thus yielding two possible solu-
tions for the homography matrix.

In contrast to classical homography estimation, the two
proposed solvers require known intrinsic calibration, which
is indeed a limitation of the method. However, in many
practical scenarios a rough focal length is often known (e.g.,
from EXIF) which is usually enough. In our experiments
we show that even very coarse estimates of the focal length
and principal point is suf�cient.
Why Does This Work? The proposed solver use the same
measurement keypoint scale twice, both in the relative depth
and in the af�ne constraints (Sec. 2.2). While these con-
straint then seem to be redundant (as they come from the
same measurements), they are algebraically independent as
they rely on different approximations (using relative key-
point scale as relative depth, compared to the AC model-
ing the point-wise linearization of plane-induced homogra-
phy). From a conceptual point-of-view, using these seem-
ingly redundant measurements can be thought of as a way
of randomly drawing homographies that are somewhat rea-
sonable (at least satisfying the point correspondence, and
being roughly correct in orientation/scale/etc.). However,
the dependency between the input data in the two constraint
sets means we get some very unstable estimates where part
of the noise comes from this modeling error. But, as our

experiments will show (Sec. 4), this can be suf�cient to �nd
initial inlier sets that allow the local optimization to con-
verge to good homographies.

4. Experiments

To evaluate the proposed minimal estimators we use
the recently proposed Homography Estimation Benchmark
(HEB) [14]1 which is a large-scale homography benchmark,
consisting of ten scenes that contain226 260homographies
and includes roughly 4M correspondences. The dataset
contains many image pairs that undergo signi�cant view-
point and illumination changes, leading to some instances
with extremely low inlier ratios. For the experiments, we
use the RootSIFT correspondences provided by the dataset.

We also consider image pairs from theHPatches [2]
dataset. This dataset is split into pairs that contain ei-
ther viewpoint or illumination changes. In the supplemen-
tary material we show additional results, including a self-
captured dataset exhibiting pure rotational motion.

4.1. Solver Stability

We �rst evaluate the characteristics of the proposed solvers
in isolation. Since it is dif�cult to generate realistic noise
for keypoint positions, orientations, and scales, we instead
opt to perform psuedo-synthetic experiments using real im-
age pairs. We consider thePiazza del Popoloscene from
theHEBdataset. For each image pair, we extract the set of
ground-truth inlier correspondences. For each solver, we
then randomly draw as many all-inlier minimal samples as
there are point-correspondences. Note that for the one-point
solvers, this corresponds to exhaustive sampling, while for
the other solvers we only explore a subset of the possible
samples, similarly to what happens in RANSAC. For each
minimal sample, we then calculate the re-projection error
of all ground-truth matches with respect to the proposed
homography. Fig. 3 (a) shows the cumulative distribution
functions (CDFs) of the average re-projection errors across
all ground truth matches. Fig. 3 (b) shows boxplots of the
ratio of ground-truth inliers that were also inliers to the gen-
erated homographies. As expected, the 4-point solver yields
the most stable estimates when applied to inlier correspon-
dences, while the solvers that integrate auxiliary informa-
tion are more noisy. Furthermore, we can see that the pro-
posed 1-SIFT solver has similar accuracy to the 2-AC solver
from [4], and that the proposed 2-SIFT solver is more ac-
curate compared to the 2-SIFT solver from [7]. As the pro-
posed 1-SIFT solver is outperforming the proposed 2-SIFT
solver, we will focus our attention to the one point solver in
the following experiments.

Note also that, while the above experiments show that the
4-point solver is signi�cantly more stable on all-inlier sam-

1https://github.com/danini/homography-benchmark
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Figure 3. Solver stability. (a) The cumulative distribution func-
tions (CDF) of the re-projection errors on ground-truth inliers, us-
ing different minimal solvers on the scene “Piazza del Popolo”
in the HEB dataset [14]. The dotted vertical line illustrates inlier
threshold. (b) Distribution of inlier ratios for each estimated ho-
mography in the evaluation of (a).

ples compared to the other solvers, when running RANSAC
it is enough to �nd a single model with suf�cient inlier sup-
port from which local optimization can converge.

4.2. Qualitative Evaluation

To gain a better understanding of how our solver performs
on minimal samples, we show some qualitative examples of
the resulting homographies. We do this by again sampling
from the ground-truth inlier matches. Again, we draw as
many minimal samples as we have inlier matches, result-
ing in exhaustive sampling for the 1-point solver and ran-
dom sampling otherwise. We compute the resulting homo-
graphies and sort the solutions based on number of inliers
(w.r.t. error less than 20 pixels). In Fig. 4, we visualize the
best homographies found by the 4-point solver and our 1-
SIFT solver, for some image pairs in theHEBdataset. We
also show the output from running the solvers in Graph-
Cut RANSAC2 [9] (GC-RANSAC). In the �gure, we see
that the homographies estimated from the 1-point solver are

2https://github.com/danini/graph-cut-ransac

much more noisy than those estimated by the 4-point solver.
In fact, in some cases even the best sampled homography is
quite far from the ground truth (in green). However, as we
see by the GC-RANSAC estimations (in red), even these
noisy estimates can be enough for the local optimization
and resampling in GC-RANSAC to �nd the correct homog-
raphy. Note that the visualized minimal samples are drawn
from inlier correspondences, and might not be sampled in
an actual RANSAC. Indeed, in some of the examples, the
4-point GC-RANSAC fails to �nd any good models. In the
supplementary, we show more qualitative examples.

4.3. Evaluation in Robust Estimation

We now evaluate the proposed solvers in the context of
robust estimation. For the evaluation, we again integrate
the solvers into GC-RANSAC, as it is representative of
the state-of-the-art and since it has empirically been shown
to be very robust against noisy model estimates. In GC-
RANSAC (and other locally optimized RANSACs), two
different solvers are used: (a) one for estimating the pose
from a minimal sample and (b) one for �tting to a larger-
than-minimal sample when doing �nal pose polishing on
all inliers or in the local optimization step. For (a), the
main objective is to solve the problem using as few cor-
respondences as possible since the processing time depends
exponentially on the number of correspondences required
for the pose estimation. We tested six minimal solvers, the
proposed 1-SIFT and 2-SIFT solvers, the standard 4-point
solver [30], the existing state-of-the-art 2-SIFT solver [7],
the 3-SIFT solver [3], and the 2-AC solver [4]. The pur-
pose of (b) is to estimate the pose parameters as accurately
as possible. For (b), we used the 4-point solver to do the
non-minimal re-�tting. For the experiments we use the two
discussed datasetsHEBandHPatches.

Comparison to SOTA. Table 2 reports the mean Average
Accuracy (mAA) of rotation errors at5� and 10� , mAA
of absolute translation errors at2 m and5 m, average pro-
cessing times (in ms), and average number of inliers on the
HEBdataset. The proposed 1-SIFT solver achieves com-
parable accuracy to the state-of-the-art 2-AC solver [4],
while having signi�cantly lower runtime (� 30% lower on
HEB) due to the reduced sample size requiring fewer iter-
ations. This is further illustrated in Figure 5 which shows
the runtime-accuracy trade-off. More detailed results are
shown in the supplementary material.

Ablation Study of 1-SIFT. As an ablation study we ex-
periment with different variations of the proposed 1-SIFT
solver as well as different approaches for obtaining the key-
point scale and orientation. For the ablation study we use
theHPatches dataset. As the dataset does not provide any
intrinsic calibration, we simply set the principal point to the
be at the center of the image, and the focal length to be
f = max( width; height ). The results are summarized in
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